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Abstract

This paper studies the application of using the discrete-time variable structure control method to reduce
the vibration of the flexible structure. The structure is subjected to arbitrary, unmeasurable disturbance
forces. The concept of independent modal space control is adopted, and the system is studied by the
discrete-time model. Here, discrete sensors and actuators are used. We choose the modal filters as the state
estimator to obtain the modal co-ordinates and modal velocities for the modal space control. A discrete-
time variable structure controller with a disturbance force observer is adopted due to its distinguished
robustness property of insensitiveness to parameter uncertainties and external disturbances. The included
disturbance force observer can observe the unknown disturbance modal forces, which are used in the
discrete-time variable structure control law to cancel out the excitations. The upperbound limitations of the
unknown disturbances in the variable structure control, therefore, are no longer needed. The switching
surface, in the discrete-time variable structure control system, is designed in an optimal sense. That is, along
the switching surface, the cost function of the states is minimized. The investigation of this research focuses
on the optimal switching surface design and the control performances of the discrete-time variable structure
controller. The performance of estimating the disturbance modal forces and the robustness property of the
control law are also discussed.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flexible structures vibration control is an important issue in many engineering applications,
especially for the precise operation performances in aerospace systems, satellites, flexible
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manipulators, etc. The flexible structures usually have low flexible rigidity and small material
damping ratio. A little excitation may lead to destructive large amplitude vibration and long
vibration decay time. These can result in fatigue, instability and poor operation of the structures.
The earliest vibration control attempts began with passive methods. The passive vibration control
methods employ the passive elements, e.g., masses, dampers and springs, to adjust the
characteristics of controlled structures to the desired values. But the passive control methods
can only control the structure responses up to a certain limit. When a better control performance
is required, an active vibration control is needed. Different from the passive systems, the active
vibration control supplies energy to suppress the vibration. However, the active vibration control
system is more complicated than the passive system. The implementation of active vibration
control needs lots of techniques about the measurement system, actuator elements and the
controller design. Recently, with the advancements in the fast-calculating computer hardware,
actuators/sensors techniques and the application of advanced control theories, real-time control
of vibration becomes practical.
The active vibration control of flexible structures has been a research area of wide interest

during the past several decades. Balas [1] and Meirovitch et al. [2,3] proposed the concept of the
independent modal space control (IMSC) for the flexible structures, where the structures were
discretized by the modal expansion method and every mode is uncoupled and individually
controlled. Experiments were carried out to verify the feasibility of the modal control [4,5], where
the modal filters [3,4,6] were used as the state estimator. Furthermore, Baz and Poh [7,8] presented
a modified independent modal space control method to determine the optimal locations, control
gains and excitation voltage of the piezoelectric actuators. The IMSC method was also used to
study the vibration control of flexible mechanisms [9,10]. Additionally, there were many
researches about the application of intelligent structures [11,12], where the sensors and actuators
were embedded within the structures and were co-ordinated through a control system. Recently,
due to the advancements in sensor and actuator techniques, the vibration control of using
intelligent structures has received a great deal of attraction. Two popular control laws, used for
the vibration suppression, are the pole-placement method and the linear quadratic (LQ) control
theory [1–10]. These methods are useful to suppress the structures vibration without disturbance
forces excitation. However, when the structures are excited by external disturbances, the active
control systems should employ other robust control laws to eliminate the influences of the
undesired excitations. In this paper, we consider the vibration control of a flexible structure
subjected to unmeasurable disturbance forces. The variable structure control (VSC) method is
adopted here due to its distinguished robustness property. The variable structure control law is
simpler relative to other robust control methods, and this control system is almost insensitive to
parametric uncertainties and external disturbances [13–16]. However, the implementation of the
variable structure control technique requires the prior knowledge of the upperbounds of the
disturbances. The upperbounds are not easy to obtain, and sometimes these values can yield
undesired over-conservative feedback control gains. Recently, Eun et al. [17] proposed a discrete-
time variable structure controller (DVSC) with a disturbance force observer which can estimate
the unknown disturbances within certain estimation errors. Then, the conventionally assumed
upperbound restriction on the unknown is relaxed to the restriction of the changing rate of the
unknown [17], which is generally a more lenient requirement. The discrete-time variable structure
control method is adopted in our research.
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In this paper, an active control procedure for reducing the vibration of a flexible structure
subjected to arbitrary, unmeasurable disturbance forces is investigated. The modal filters are used
as the state estimator of the modal space. In order to suppress the vibration due to the external
excitations, the discrete-time variable structure control law with a disturbance force observer is
applied here. The disturbance force observer can estimate the unknown disturbance modal forces.
These estimated values are used in the control law to cancel out the undesired excitations. The
switching surface in the discrete-time variable structure control system is designed in an optimal
sense. When the state trajectory is moving along the switching surface to the origin, the defined
performance index of the states will be minimized. The discussions are concentrated on the
optimal switching surface design, the effect of observing the disturbance modal forces and the
control performances of the discrete-time variable structure control system.

2. Equation of motion

The flexible structure considered in this paper is a slender cantilever beam. As shown in Fig. 1,
the beam has a constant cross-sectional area and the length of the beam is L: The axial direction is
defined as the x-axis and t represents time. Displacement in the transverse direction is denoted as
yðx; tÞ: The distributed excitation force acting on the beam is Pðx; tÞ: The equation of motion of
the beam can be expressed as [18]

EI
@4y

@x4
þ m

@2y

@t2
¼ Pðx; tÞ; ð1Þ

where the Euler beam model is used. The notation E is Young’s modulus of the beam material, I
is the area moment of inertia of the beam cross-section m is the mass per unit length. Defining the
following dimensionless parameters

yn ¼ y=L; xn ¼ x=L; tn ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
=L2Þt; Pn ¼ ðL3=EIÞPðx; tÞ; ð2Þ

we have the non-dimensional equation of motion

@4yn

@xn4
þ

@2yn

@tn2
¼ Pn: ð3Þ

Fig. 1. Cantilever beam model with the dislocation sensors and actuators.
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The normalized mode shape corresponding to the rth mode of the dimensionless cantilever beam
is written as

Y n

r ¼An

r ðsin b
n

r � sinhb
n

r Þðsin b
n

r xn � sinhbn

r xnÞ

þ ðcos bn

r þ coshb
n

r Þðcos b
n

r xn � coshbn

r xnÞ ð4Þ

with r ¼ 1; 2; 3;y and An
r is a constant. In the last expression, the rth eigenvalue of the

dimensionless beam bn

r should satisfy the characteristic equation cos b
n

r cosh b
n

r ¼ �1: The natural
frequency of the rth mode is on

r ¼ bn

r 2: For obtaining the time responses of the dimensionless
beam subjected to the dimensionless distributed force Pn; the method of truncated modal
expansion is adopted here. The dimensionless displacement of the beam is approximately
expressed as

yn ¼
Xn

r¼1

Yn

r Z
n

r ; ð5Þ

where Znr is the rth modal co-ordinate, and n is the number of modes used. An extra uncoupled
modal damping term of damping ratio xnr is added to each modal equation for representing the
structure damping. A set of uncoupled modal equations then can be obtained as

.Znr þ 2x
n

ro
n

r ’Z
n

r þ on

r 2Z
n

r ¼ nn

r ; ð6Þ

in which r ¼ 1; 2;y; n; and nn
r ¼

R 1
0 Y n

r Pn dxn is the corresponding modal force. In the following
section all the statements are discussed in this dimensionless system.

3. Independent modal space control

The scheme of control applied to the flexible beam here is based on the IMSC method [1–3]. In
this method, every mode of the beam is independent to each other and is individually controlled.
The discrete-time control system is considered. The schematic diagram of the beam vibration
control is shown in Fig. 2(a). The beam displacements and velocities are measured by discrete
sensors and are sampled through the analog-to-digital (A/D) converter. Then, the data are treated
through the modal filters to obtain the modal co-ordinates and modal velocities. The feedback
control algorithm is applied in the modal space. A discrete-time variable structure controller with
a disturbance force observer [17] is developed. The observer provides the observed disturbance
modal forces. The unwanted excitation can be eliminated by the proposed DVSC. The digital-to-
analog (D/A) converter is added at the inputs of point actuators. Through the D/A converter, the
modal control forces obtained from the DVSC are transferred to the point actuators to suppress
the beam vibration.

3.1. Independent modal space control

Since the distributed force Pn applied to the beam is the sum of the unmeasurable disturbance
forces and the control forces, the rth modal force nn

r of the beam can also be separated into two
portions. One is the control modal force nn

cr and the other is the disturbance modal force nn
dr:Here,

nn
dr is a bounded input, but the bound is unknown.
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Each modal equation (6) can be rearranged in the discrete-time state space form

vrðk þ 1Þ ¼ ArvrðkÞ þ Brn
n

crðkÞ þ Crn
n

drðkÞ; ð7Þ

in which vrðkÞ ¼ Znr ðkÞ ’Znr ðkÞ
� �T

; and Ar; Br; Cr are the 2� 2; 2� 1; 2� 1 matrices, respectively.
According to the method of IMSC [2,3], each vibration mode is decoupled and is separately
controlled. For reducing the influence of disturbance excitation nn

drðkÞ; the control modal force
nn

crðkÞ is derived from the discrete-time variable structure control law with a disturbance force
observer. Fig. 2(b) shows the block diagram of the control of the rth mode.

3.2. Modal filters and point actuators forces

The implementation of the IMSC in the distributed structure requires the distributed sensors
and actuators to extract the modal co-ordinates and supply the control modal forces respectively.
Since the distributed sensors and actuators are not always available, discrete sensors and point
actuators are usually used. The estimated modal co-ordinates #Znr ðkÞ and modal velocities ’#Znr ðkÞ

Fig. 2. Modal space vibration control block diagram of the beam: (a) schematic diagram of the beam vibration control;

(b) the control block diagram of the rth mode of the beam.
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based on discrete measurements are [3,6,19]

#Znr ðkÞ ¼
Xp

j¼1

ðDn�1Þrjy
nð %xn

j ; kÞ;

’#Znr ðkÞ ¼
Xp

j¼1

ðDn�1Þrj ’y
nð %xn

j ; kÞ; ð8Þ

where r; j ¼ 1; 2;y; p and %xn
j is the jth sensor location. The matrix

Dn ¼

Y n
1 ð %x

n
1Þ Yn

2 ð %x
n
1Þ ? Y n

k ð %x
n
1Þ

Y n
1 ð %x

n
2Þ Yn

2 ð %x
n
2Þ ? Y n

k ð %x
n
2Þ

^ ? ? ^

Y n
1 ð %x

n
pÞ Yn

2 ð %x
n
pÞ ? Y n

k ð %x
n
pÞ

2
66664

3
77775

p�p

: ð9Þ

Note that the inverse of Dn must exist. The estimated modal co-ordinates and modal velocities will
replace Znr ðkÞ and ’Znr ðkÞ used in the calculation of the control modal force nn

crðkÞ: The actual control
forces are supplied by m discrete actuators located at xn

i ; i ¼ 1; 2;?;m; to control the first m

modes of the beam. Then, the dimensionless control forces can be expressed as FnðkÞ ¼ Yn�1Nn
c ðkÞ

[3,6,19], where

Nn

c ðkÞ ¼

nn
c1ðkÞ

nn
c2ðkÞ

^

nn
cmðkÞ

2
6664

3
7775

m�1

;Yn ¼

Y n
1 ðx

n
1Þ Yn

1 ðx
n
2Þ ? Y n

1 ðx
n
mÞ

Y n
2 ðx

n
1Þ Yn

2 ðx
n
2Þ ? Y n

2 ðx
n
mÞ

^ ^ ^ ^

Yn
mðx

n
1Þ Y n

mðx
n
2Þ ? Y n

mðx
n
mÞ

2
6664

3
7775

m�m

;FnðkÞ ¼

Fn
1 ðkÞ

Fn
2 ðkÞ

^

Fn
mðkÞ

2
6664

3
7775

m�1

ð10Þ

and Fn
i ðkÞ is the ith dimensionless actuator force. The actuator locations xn

i must be carefully
chosen to avoid the singularity of Y*�1:
In structural vibration control, we will usually encounter the observation and control spillover.

The observation spillover occurs when the unobserved modes responses are embedded into the
modal filtering. This spillover effect can reduce the accuracy of estimated modal co-ordinates and
modal velocities, and can also shift the uncontrolled modes eigenvalues when the feedback control
is applied [1–3,6,20]. The observation spillover may even induce the instability of the system. The
selection of sensor positions plays an important role in the phenomenon of observation spillover
[3,6,20]. Usually, the lower vibration modes dominate the responses of structures. When the
sensors are placed at the nodes of the lowest unobserved mode, the amplitude contribution of the
unobserved modes to the modal filters can be greatly decreased. Consequently the observation
spillover is reduced. Other useful ways to eliminate the observation spillover are using the
prefilters to screen out the contribution of the unobserved modes or using more sensors to
interpolate the modal co-ordinates precisely [1–3,6,20]. The other issue, control spillover, occurs
when the uncontrolled modes are excited by the control forces for the controlled modes. The
control spillover phenomenon can be reduced by placing the actuators at the nodes of the lowest
uncontrolled mode [3]. The control spillover only degrades the performance of the control
responses but cannot destabilize the system [1–3].
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4. Discrete-time variable structure controller design

The controller adopted in this research is a discrete-time variable structure controller. Before
designing the variable structure system, it is beneficial to introduce the characteristics of VSC and
DVSC. Variable structure control with the sliding mode is an established method for controlling
uncertain dynamics systems. The most attractive features of the VSC are invariance and
robustness to uncertainties including model errors and external disturbances. This method enables
the controller with a function of more than two structures, and the control is switched between
different structures. The structures of the control law in the VSC system are governed by the sign
of a specific switching function s where s is in terms of the states of the system [14–16,21,22]. The
switching or sliding surface s ¼ 0 divides the system phase plane into two regions, s > 0 and so0:
All of the system state trajectories belong to one of the following situations: s > 0; s ¼ 0 and so0:
One of the conspicuous features of VSC is that any state trajectories outside the switching surface
s ¼ 0 will be forced to reach this surface, then slide on it and move to the system origin. The
condition under which the state trajectory reaches the switching surface is called the reaching
condition. The motion of the state trajectory under the reaching condition is called the reaching
mode. The motion of the state trajectory slides on the switching surface is called the sliding mode
which occurs by assuming that infinity fast switching between different structures is possible.
Hence, the controller designed in VSC is to ensure that the reaching mode and sliding mode can
occur and then the variable structure control is implemented.
The method of DVSC is similar to that of the continuous-time system. However, the discrete

feature of the controller can cause zigzagging motion of the state trajectory near the switching
surface instead of the motion sliding on the surface [14,16,23]. That is, DVSC can only undergo
‘‘quasi-sliding mode’’, and the states of the system can approach the switching surface but cannot
stay on it, in general.
The first step of implementing VSC or DVSC algorithm is to design a stable switching surface

which contains the desired closed-loop system dynamics. Then, design a variable structure control
law such that the reaching and sliding modes can occur and the system is converging to its origin.
In this section we will introduce the switching surface and the control law of the DVSC used in the
research.
An optimal switching surface is considered here. In other words, if the state trajectory is moving

along the switching surface, the defined quadratic performance index of states will be minimized.
The discrete-time variable structure controller with a disturbance force observer [17] is adopted
here. With the observer, the upperbounds assumption in the conventional DVSC can be relaxed.
Thus, the controller is more non-conservative and sometimes the high gain input in the
conventional DVSC can be alleviated [17,21,24]. The DVSC system is implemented in the modal
space and every mode has a switching surface and the associated control modal force.

4.1. Optimal switching function design

There are many methods [14–16,21,22] to determine the switching function srðkÞ of the rth
modal equation. Note that the switching surface must contain the system origin. The major
concern in designing the switching function is to guarantee that the system is stable and the states
will approach to the origin when the state trajectory is in the quasi-sliding mode. One type of the

D.-A. Wang, Y.-M. Huang / Journal of Sound and Vibration 261 (2003) 483–501 489



switching surface srðkÞ ¼ 0 is the optimal switching surface [21–23], which means that along the
switching surface the defined quadratic performance index will be minimized when the state
trajectory is in the sliding mode. Although the state trajectory is usually impossible to stay on the
switching surface in DVSC, the optimal switching surface design can also give the sense to
minimize the defined performance index [23].
Suppose the optimal switching function of the rth mode is defined as

srðkÞ ¼ CrvrðkÞ; ð11Þ

where Cr is a 1� 2 matrix and will be determined later. For designing the optimal switching
surface, a co-ordinate transformation is needed. The matrix Br in Eq. (7) is a full rank matrix and
this system is controllable. Let zrðkÞ ¼ ½ z1rðkÞ z2rðkÞ �T ¼ TrvrðkÞ; where Tr is a 2� 2 non-
singular transformation matrix, so that TrBr ¼ ½ 0 *B2r �

T
1�2 with

*B2ra0: The properties of
stability, controllability and observability of a linear system is invariable through this
transformation. Thus, Eq. (7) can be rewritten as

zrðk þ 1Þ ¼ TrArT
�1
r zrðkÞ þ TrBrn

n

crðkÞ þ TrCrn
n

drðkÞ: ð12Þ

The transformed state space equation can be partitioned to yield

z1rðk þ 1Þ ¼ *A11rz1rðkÞ þ *A12rz2rðkÞ þ *G1rnn

drðkÞ;

z2rðk þ 1Þ ¼ *A12rz1rðkÞ þ *A22rz2rðkÞ þ *B2rn
n

crðkÞ þ *G2rnn

drðkÞ; ð13Þ

where

TrArT
�1
r ¼

*A11r *A12r

*A12r *A22r

" #
2�2

; TrCr ¼
*G1r
*G2r

" #
2�1

: ð14Þ

The switching function in the transformed system then becomes

srðkÞ ¼ CrT
�1
r zrðkÞ: ð15Þ

In the design of the optimal switching function, it is usually assumed that the matching condition
is held [21–23]. From the viewpoint of equivalent control [14,17,21,22], all of the perturbations are
vanished in the sliding mode. Define the performance index of the controlled mode as [21–23]

Jr ¼
XN
k¼ks

zTr ðkÞQrzrðkÞ

¼
XN
k¼ks

ðzT1rðkÞQ11rz1rðkÞ þ 2z
T
1rðkÞQ12rz2rðkÞ þ zT2rðkÞQ22rz2rðkÞÞ; ð16Þ

where

Qr ¼
Q11r Q12r

Q12r Q22r

" #
2�2

is a positive definite matrix and ks is the control step number when the sliding mode begins. Define
the new variable nrðkÞ in the form of

nrðkÞ ¼ Q�1
22rQ12rz1rðkÞ þ z2rðkÞ: ð17Þ
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The closed-loop dynamics of Eq. (13) in the sliding mode is then written as [21,22]

z1rðk þ 1Þ ¼ *An

11rz1rðkÞ þ *A12rnrðkÞ ð18Þ

and the performance index (16) becomes

Jr ¼
XN
k¼ks

ðzT1rðkÞQ
n

11rz1rðkÞ þ nTr ðkÞQ22rnrðkÞÞ; ð19Þ

where

*An

11r ¼ *A11r � *A12rQ
�1
22rQ12r;

Qn

11r ¼Q11r � Q12rQ
�1
22rQ12r: ð20Þ

Eqs. (18) and (19) are the standard quadratic optimal control problem [21–23,25]. The solution in
Ref. [25] can be applied directly. If ðAr BrÞ is controllable, then ð *An

11r
*A12rÞ is also controllable

[21,22]. The optimal control solution of Eqs. (18) and (19) is

nrðkÞ ¼ �Krz1rðkÞ; ð21Þ

where

Kr ¼ ðQ22r þ *AT12rPr
*A12rÞ

�1 *AT12rPr
*An

11r ð22Þ

and Pr is a p.d.s. solution of the standard discrete algebraic Riccati equation in the following
form:

*An

11rTPr
*An

11r � *An

11rTPr
*A12rðQ22r þ *AT12rPr

*A12rÞ
�1 *AT12rPr

*An

11r � Pr ¼ �Qn

11r: ð23Þ

All of the eigenvalues of Eqs. (18) and (19) lie inside the unit circle. The system in the sliding mode
is stable and is written as

z1rðk þ 1Þ ¼ ð *An

11r � *A12rKrÞz1rðkÞ: ð24Þ

Substituting Eq. (21) into Eq. (17), we have

ðQ�1
22rQ12r þ KrÞz1rðkÞ þ z2rðkÞ ¼ 0: ð25Þ

This is the sliding surface, srðkÞ ¼ CrT
�1
r zrðkÞ ¼ 0; of the transformed system (12). We can

determine the matrix Cr of the optimal switching function of the original system from Eq. (25).

4.2. Discrete-time variable structure control law with a disturbance force observer

The discrete-time variable structure control law with a disturbance force observer presented by
Eun et al. [17] is adopted here. The major advantage of this method is that the conventionally
assumed upperbound restriction on the disturbance force in DVSC is relaxed. The restriction now
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is on the changing rate of the disturbance. The optimal switching surface designed above could
ensure that the closed-loop system in the quasi-sliding mode is stable and the states will converge
to the origin if the control law satisfies the reaching condition. This in turn guarantees the
existence of the quasi-sliding mode on the switching surface. The disturbance force estimation law
and the discrete-time variable structure control law are as follows [17]:

#nn

drðkÞ ¼ #nn

drðk � 1Þ þ ðCrBrÞ
�1gr½srðkÞ � qrsrðk � 1Þ þ krsgnðsrðk � 1ÞÞ�;

nn

crðkÞ ¼ � #nn

drðkÞ þ ðCrBrÞ
�1½�CrArvrðkÞ þ qrsrðkÞ � krsgnðsrðkÞÞ�: ð26Þ

The estimated disturbance modal force #nn
drðkÞ is included in the control modal force nn

crðkÞ to
cancel out the disturbance excitation. The notations qr; kr and gr are constant parameters to be
determined and sgnð	Þ is the sign function. Similar to the reaching law method in Refs. [15,16,22],
the parameter qr is associated to the reaching rate of the reaching mode. The parameter kr is
related to the disturbance force changing rate. By Eq. (26), the reaching mode and quasi-sliding
mode of the controlled system can occur [17].
The closed-loop quasi-sliding mode dynamics of srðkÞ is expressed as [17]

srðk þ 1Þ ¼ qrsrðkÞ � kr sgnðsrðkÞÞ þ CrBrDnn

drðkÞ; ð27Þ

where Dnn
drðkÞ ¼ nn

drðkÞ � #nn
drðkÞ is the disturbance estimation error. The disturbance estimation

error dynamics satisfies

Dnn

drðk þ 1Þ ¼ ð1� grÞDnn

drðkÞ þ nn

drðk þ 1Þ � nn

drðkÞ: ð28Þ

As proven in Refs. [17], if the disturbance changing rate jnn
drðk þ 1Þ � nn

drðkÞjomr holds for all k

with j1� grjo1 and for some positive constant mr; then there exists some k0 such that
jDnn

drðkÞjpmr=gr for all k > k0 regardless of Dnn
drð0Þ: It means that as the disturbance changing rate

is bounded, the disturbance estimation error Dnn
drðkÞ is less than a specific value. The magnitude of

the switching function srðkÞ is also proven to be bounded by the proposed control method [17]. It
means that if the following conditions:

1. 0pqrp1; 0ogro1
2. jnn

drðk þ 1Þ � nn
drðkÞjomr holds for all k for some constant mr > 0

3. CrBrðmr=grÞokr

are satisfied, the value of the switching function remains smaller than CrBrðmr=grÞ þ kr regardless
of the size of the disturbance force. When the disturbance varies slowly, mr is small and
accordingly small kr is sufficient to satisfy condition 3. This makes CrBrðmr=grÞ þ kr being small
and the value of the switching function is close to zero. The quasi-sliding mode then occurs in the
neighborhood of the switching surface.
In variable structure control, chatter is inevitable because of the discontinuous control. To

eliminate the chatter motion, a boundary layer around the switching surface is introduced
[14,17,21,22]. A saturation function, satðsrðkÞ=frÞ; can replace the sign function in Eq. (26) where
fr is the thickness of the boundary layer [14,17,21,22]. Within the boundary layer, the control is a
smooth approximation of the switching function. The stability of Eq. (12) is also guaranteed when
the saturation function is used [17].
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5. Numerical simulation and discussions

A cantilever beam subjected to unmeasurable disturbance forces is considered here. The
investigation of the vibration control is carried out in the dimensionless system. The truncated
beam model is adopted. The first 10 modes of the beam, including the controlled modes and
uncontrolled modes, are used to represent the total beam responses in the numerical simulation.
The damping ratio xnr of all modes are x

n

r ¼ 0:05: According to IMSC for distributed structures,
each mode is individually controlled. The modal filters are used as the state estimator. A discrete-
time variable structure controller with a disturbance force observer is used to suppress the external
excitation. The initial conditions of the beam are chosen as ynð1; 0Þ ¼ 1=3; ’ynð1; 0Þ ¼ 0; and the
disturbance force is applied at the tip of the beam. The ideal sensors and actuators used for the
active vibration control dislocate to each other. The locations of actuators and sensors play a
major role in the vibration control effect of structures. For using less actuator forces to control the
structures vibration, good locations of the actuators are the points near the antinodes of
the controlled mode shapes. The first four vibration modes are chosen as the controlled modes.
The four actuators locations xn

i are at ð0:29; 0:47; 0:69; 1:00Þ; which are the points of the antinodes
of the first three modes. For estimating the modal co-ordinates and velocities accurately, the first
six modal co-ordinates and modal velocities are observed. The six sensors are distributed near the
nodes of the seventh mode, then the observation spillover is greatly eliminated. The sensors
locations %xn

j are at ð0:19; 0:35; 0:50; 0:65; 0:81; 0:95Þ:

5.1. Estimated states by using modal filters

The purpose of using the modal filters is to obtain the modal co-ordinates and modal
velocities. Fig. 3 shows the estimated modal co-ordinates from the modal filters for the first,
fourth and the sixth modes, where the dimensionless disturbance force is Pn ¼ sin tn and no
control is applied. The estimated modal co-ordinates are shown by the solid lines and the
theoretical results are indicated by the dashed lines. From Fig. 3(a), it can be seen that the
first estimated modal co-ordinate is almost the same as the theoretical value. Fig. 3(b) illustrates
the fourth estimated modal co-ordinate where a small observation spillover is found. Fig. 3(c)
shows the latest estimated modal co-ordinate, the sixth mode. Obviously, the observation
spillover is large for this mode. In conclusion, the estimated modal co-ordinates of the lower
modes are more accurate than the higher ones [6,19] and the observation spillover is more evident
in higher modes.

5.2. Modal space vibration control by the discrete-time variable structure control method

The estimated modal co-ordinates and velocities by modal filters are used to calculate the values
of the switching functions and to determine the control modal forces in the modal space vibration
control. The point actuator forces are obtained according to the description in Section 3 after the
modal co-ordinates and velocities are known. The first procedure of designing the discrete-time
variable structure control law is to determine the stable switching function. Then, design the
control law such that the reaching mode and quasi-sliding mode occur. The design of the DVSC
for the beam system is presented below.
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5.2.1. The optimal switching functions design

The modal Eq. (7) is controllable and the associated Br is a full rank matrix. Every controlled
mode has a switching function. The design objective of the optimal switching function is to find
the switching surface such that the defined quadratic performance index of the controlled mode

Fig. 3. Estimated modal co-ordinates by using modal filters: (a) the first mode; (b) the fourth mode; and (c) the sixth

mode.
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will be minimized when the state trajectory is in the sliding mode. For designing the optimal
switching function, the modal Eq. (7) must be transformed to a new co-ordinates system. By
choosing a simple non-singular transformation matrix

Tr ¼
1 �Br;11

Br;21

0 1

" #
;

where Br;11 and Br;21 are the elements of Br; the modal equation is transformed to the new co-
ordinates system, Eq. (12). Suppose the quadratic performance index defined in the original
system is Jor ¼

P
N

k¼ks
vTr ðkÞQorvrðkÞ; where the subscript o refers to the original system. For

balancing the weighting between modal co-ordinate and modal velocity in Jor; we choose

Qor ¼
o2r 0

0 1

" #
:

Then the weighting matrix, in the new co-ordinates system, is Qr ¼ ðT�1
r ÞTQorT

�1
r : By the

definition of state variables given in Eq. (17), the minimization of the performance index Jr (16)
becomes the standard discrete-time optimal control problem. Solving Eqs. (18) and (19), we
obtain the associated optimal state feedback gain Kr: All the eigenvalues of An

11r � A12rKr lie inside
the unit circle. The switching surface of the new coordinates system is given in Eq. (25). By the
inverse transformation, the coefficient matrix Cr of the optimal switching function of the original
system is determined. Table 1 gives the associated optimal switching functions of the controlled
modes.

5.2.2. Discrete-time variable structure control
The discrete-time variable structure control law with a disturbance force observer is used in the

research. With the disturbance force observer observing the disturbance modal forces, the external
excitation will be cancelled out by the estimated values. The upperbounds of the perturbations in
the conventional DVSC are not needed. The condition now is relaxed to the restriction of the
changing rates of the unknown disturbances. This is generally a more lenient requirement than the
conventional requirement of bounded disturbances magnitudes. However, the chattering
phenomenon is always encountered in the variable structure control. For eliminating the
chattering, the boundary layer method is employed. The saturation functions satðsrðkÞ=frÞ; with
the boundary layers thickness fr; replace the sign functions in Eq. (26). Within the boundary
layers, the control modal forces nn

crðkÞ are more smooth than those without using the boundary
layer method, and the chattering phenomena can be eliminated. Moreover, the values of jsrðkÞ=frj

Table 1

Optimal switching functions of controlled modes

Mode no. srðkÞ ¼ CrvrðkÞ

1 C1 ¼ 3:5218 1
� �

2 C2 ¼ 22:0657 1
� �

3 C3 ¼ 61:4716 1
� �

4 C4 ¼ 119:1794 1
� �
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are usually less than 1 within the boundary layers. It means that the control gains within the
boundary layer are evidently reduced. The dimensionless sampling time of the DVSC system is
chosen as 0.001. Suppose the disturbance modal forces changing rates mr of the first four modes
are less than 2�2; 2�3; 2�4; 2�5; respectively. Table 2 gives the design parameters of the controller
of different controlled modes. Since the higher modes dynamic responses are faster than those of
the lower modes, qr of higher modes are less than those of the lower modes for balancing the
reaching time of each mode. The dynamic response amplitudes of higher modes are smaller than
those of lower modes, so the associated values of kr and fr are also smaller. With the above design
parameters, the disturbance estimation errors are bounded within certain acceptable values. The
finite reaching time and the quasi-sliding mode properties are also guaranteed.
Fig. 4 demonstrates the performance of the disturbance force observer for observing different

types of disturbance forces for the first mode. The effect of tracking the sine function, sin tn; is
shown in Fig. 4(a). The solid line displays the observed disturbance modal force #nn

d1ðkÞ: The
dashed line indicates the actual disturbance modal force nn

d1ðkÞ: Fig. 4(b) represents the result of
observing the force 0:4 sin tn þ 0:3cos 2tn þ 0:3sinð4tn þ 1Þ; and Fig. 4(c) shows the result of
observing the step function of amplitude 1. It is seen that the disturbance force observer can
estimate the disturbance modal forces very well. Because of the short sampling time and the small
changing rates m1; the observed disturbance modal forces are almost the same as the real
disturbance modal force. The more accurately the disturbance modal forces are observed, the
better cancellation of these disturbance forces will be obtained when the control is implemented.
When the estimation errors are small, the variations in the switching functions and the system
oscillation are also small.
The control results of the first mode are illustrated in Fig. 5, where the disturbance force is

sin tn: The solid lines indicate the controlled mode responses and the dashed lines exhibits the
uncontrolled mode responses. From Fig. 5, the discrete-time variable structure control law with a
disturbance force observer presented in this paper can successfully suppress the modal responses.
The mode response is insensitive to the external excitation. There are almost no steady state
oscillation found and without the often seen chattering phenomenon in DVSC due to the good
accuracy of estimated disturbance modal force and the use of suitable saturation function.
With the optimal switching surface designed in Section 5.2.1 Fig. 6 exhibits the phase portraits

of the controlled modes when the control is implemented. The reaching mode and quasi-sliding
mode motions are clear in this figure. Because of the suitable choosing of the boundary layers
thickness fr; the chattering phenomenon does not occur. The state trajectories are bounded within
the boundary layers when they are in quasi-sliding mode. Note, the small estimation errors of

Table 2

Design parameters of the discrete-time variable structure control law with a disturbance force observer

Mode no. qr kr gr fr

1 0.73 4:7� 10�3 0.6 5� 10�2

2 0.65 5:1� 10�4 0.6 5� 10�3

3 0.52 6:3� 10�5 0.6 5� 10�4

4 0.47 7:5� 10�6 0.6 5� 10�5
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disturbance modal forces also induce small variations of srðkÞ around the switching surfaces
srðkÞ ¼ 0: Although employing the saturation function can avoid the chattering, it also degrades
the robustness of the control law and the control performance [14,21,22]. The states trajectories
will oscillate around the origin of the system when we use the saturation functions. The oscillation

Fig. 4. Observed disturbance modal forces via the disturbance force observer: (a) sin tn; (b) 0:4sin tn þ 0:3cos 2tn þ
0:3sin ð4tn þ 1Þ; (c) step function of amplitude 1.
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phenomenon is not seen here due to the scale chosen in the figure. As the boundary layer thickness
is increased, this phenomenon is expected to be more evident.
Fig. 7 illustrates both of the first control modal force and the first disturbance modal force. The

circle symbol indicates the first control modal force and the dashed line indicates the first
disturbance modal force. The chattering phenomenon is also not found in the control modal
force. From this figure, we see that the control modal force cancel out the disturbance modal force
effectively. Fig. 8 displays the control results of the beam. The solid lines indicate the controlled
beam tip responses and the dashed lines exhibit the non-controlled beam tip responses. The
vibration of the beam is quickly suppressed and the steady state oscillation is not found when the
beam is controlled. The control spillover phenomenon of distributed system is not evident here
due to the figure chosen. The discrete-time variable structure control law with a disturbance force
observer can suppress the vibration well and the disturbance rejection ability is good.

6. Conclusions

The application of using the discrete-time variable structure control method to suppress the
vibration of a flexible structure, subjected to unmeasurable disturbance forces, has been
investigated. The independent modal space control is used as the frame of the vibration control of

Fig. 5. Responses of the first mode under the discrete-time variable structure control with a disturbance force observer:

(a) modal co-ordinate; (b) modal velocity.
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the distributed parameters structure. The modal filters are used to estimate the modal co-
ordinates. A discrete-time variable structure controller with a disturbance force observer, for each
mode, is adopted due to its distinguished robustness property to against external excitations. This
variable structure control technique can observe the unknown disturbances well. Then, the

Fig. 6. Phase portraits of the controlled modes when the control is implemented. (a) the first mode; (b) the second

mode; (c) the third mode; and (d) the fourth mode.

Fig. 7. First control modal force of the beam when the control is implemented.
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variations in the switching functions of controlled modes and the system oscillation are reduced.
Moreover, the upperbounds criterion of the disturbances in the conventional DVSC is relaxed to
the changing rates of the disturbances. The optimal switching surfaces are designed in the DVSC
for minimizing the linear quadratic cost functions of states. The simulation results show that this
control algorithm has good disturbance rejection ability and can successfully attenuate the
structure vibration.
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